ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design, synthesis, and anti-HCV activity of thiourea compounds

Iou-Jiun Kang, Li-Wen Wang, Chung-Chi Lee, Yen-Chun Lee, Yu-Sheng Chao, Tsu-An Hsu*, Jyh-Haur Chern*

Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC

ARTICLE INFO

Article history: Received 5 November 2008 Revised 9 February 2009 Accepted 12 February 2009 Available online 20 February 2009

Keyword: HCV inhibitor

ABSTRACT

A series of thiourea derivatives were synthesized and their antiviral activity was evaluated in a cell-based HCV subgenomic replicon assay. SAR studies revealed that the chain length and the position of the alkyl linker largely influenced the in vitro anti-HCV activity of this class of potent antiviral agents. Among this series of compounds synthesized, the thiourea derivative with a six-carbon alkyl linker at the meta-position of the central phenyl ring (10) was identified as the most potent anti-HCV inhibitor ($EC_{50} = 0.047 \mu M$) with a selectivity index of 596.

© 2009 Elsevier Ltd. All rights reserved.

Hepatitis C virus (HCV) is a blood-borne virus that was identified in 1989. Six genotypes with several subtypes within each genotype have been described for this member of the Flaviviridae family.² It is estimated that more than 170 million people worldwide are infected by HCV.³ Most of those with acute hepatitis C develop a chronic infection. Chronic hepatitis C is often asymptomatic but may lead to liver cirrhosis and hepatocellular carcinoma (HCC) within the next decade.⁴ Liver failure related to HCV infection is, in many countries, the leading cause of liver transplantation.⁵ There is currently no vaccine or a direct antiviral agent for HCV. 6 The standard of care for treating HCV is a combination of pegylated interferon and ribavirin. However, this therapy in patients with genotype 1 is not very successful and associated with serious side effects. Therefore, there is an urgent need to discover and develop new anti-HCV agents that are more effective and better tolerated by patients.

Recently, an antiviral screening program was initiated to search for new HCV inhibitors via HCV replicon assay⁸ in our laboratory. Interestingly, a thiourea compound **1** was identified as a potential anti-HCV agent, the structure of which is illustrated in Figure 1. This compound was found to possess antiviral activity against HCV with an EC $_{50}$ of 0.494 μM . Therefore many structurally related thiourea compounds were synthesized and evaluated for their anti-HCV activity. Details of this investigation will be described herein.

In this Letter, we described the synthesis of antiviral thiourea compounds via the key nucleophilic substitution of phenol or aniline with phenylalkyl bromide, compound **22** and ditosylate **56** (Schemes 1–3). All the resulting compounds were then submitted for anti-HCV testing as well as cytotoxicity evaluation in the

E-mail address: jhchen@nhri.org.tw (J.-H. Chern).

Ava5 cell lines. Preliminary structure-activity relationships against HCV are reported (Tables 1 and 2).

The thiourea compounds **1** and **5–20** were prepared by the method summarized in Scheme 1. Nucleophilic substitution of phenol (or aniline) **2** with phenylalkyl bromide using potassium carbonate as a base in 1-methyl-2-pyrrolidine (NMP) at 90 °C for 3 h afforded compound **3**. Subsequent nitro reduction of compound **3** in the presence of tin(II) chloride in ethanol at 70 °C overnight gave the aniline **4** in excellent yields. The aniline **4** was treated with 1,1'-(thiocarbonyl)diimidazole (TCDI) in dichloromethane at room temperature followed by reaction with 25% ammonia solution or the appropriate primary amines to give the desired compounds **1** and **5–20**.

Compounds **25–53** were synthesized by the method summarized in Scheme 2. In the presence of potassium carbonate, alcohol **21** can undergo nucleophilic substitution with dibromo compound to give compound **22**. Subsequent O-alkylation of 3-nitrophenol with compound **22** in the presence of potassium carbonate in NMP at 90 °C gave compound **23**. A solution of compound **23** in ethyl acetate is hydrogenated in the presence of 10% Pd/C with hydrogen filled in a balloon at room temperature overnight to give the aniline **24** in excellent yields. The aniline **24** was treated with 1,1'-(thiocarbonyl)diimidazole (TCDI) in dichloromethane at room

Figure 1. Structure of thiourea compound **1**.

 $^{^{\}ast}$ Corresponding authors. Tel.: +886 37 246 166x35716; fax: +886 37 586 456 (J.-H.C.).

Scheme 1. General synthetic route to thiourea compounds 1 and 5-20.

Ar-OH + Br Br
$$\frac{R^2}{NMP}$$
 $\frac{K_2CO_3, KI}{NMP}$ $\frac{R^2}{90 \, ^{\circ}C, 3 \, h}$ $\frac{R^2}{NMP}$ $\frac{R^2}{NMP}}$ $\frac{R^2}{NMP}$ $\frac{R^2$

Scheme 2. General synthetic route to thiourea compounds **25–53**.

temperature followed by reaction with 25% ammonia solution gave the target compounds **25–53**.

Compound **60** was synthesized by the method summarized in Scheme 3. Reduction of the glutaric acid **54** with lithium aluminum hydride in dry ether gave the diol **55**, which was then reacted with *p*-toluenesulfonyl chloride in pyridine to give the corresponding ditosylate **56**. Subsequent nucleophilic substitution of 3-nitrophe-

nol with 2 equiv of the ditosylate **56** using potassium carbonate as a base at refluxing acetonitrile gave compound **57**, which was coupled with phenol in the presence of potassium carbonate in acetonitrile to give the compound **58**. A solution of compound **58** in ethyl acetate is hydrogenated in the presence of 10% Pd/C with hydrogen filled in a balloon at room temperature overnight to give the aniline **59** in excellent yields. The aniline **59** was treated with

Scheme 3. Synthesis of thiourea compound 60.

Table 1
Anti-HCV activity and cytotoxicity for compounds 1 and 5–20

$$R^{1-N}$$
 H
 H
 $X-(CH_2)_{\overline{n}}$

Compound	R ¹	Х	Isomer	n	1b EC ₅₀ (μM) ^a	CC ₅₀ (μM) ^a	SI ^b
1	Н	0	Meta	0	0.494	>50	>101
5	Н	0	Meta	1	0.561	>50	>89
6	Н	0	Meta	2	0.335	>50	>149
7	Н	0	Meta	3	0.231	>50	>216
8	Н	0	Meta	4	0.159	>50	>314
9	Н	0	Meta	5	0.048	22	458
10	Н	0	Meta	6	0.047	28	596
11	Н	0	Meta	7	0.097	23	237
12	Н	0	Ortho	5	1.012	31	31
13	Н	0	Para	5	0.197	10	51
14	Н	NH	Meta	5	0.143	>50	>350
15	Me	0	Meta	5	0.822	>50	>61
16	Et	0	Meta	5	0.685	>50	>73
17	n-Pr	0	Meta	5	0.708	32	45
18	Ph	0	Meta	5	31.497	35	1
19	CH ₂ Ph	0	Meta	5	7.238	32	4
20	CH ₂ CH ₂ Ph	0	Meta	5	13.388	33	2

^a Mean of triplicate well values. All experiments were performed at least twice.

1,1'-(thiocarbonyl)diimidazole (TCDI) in dichloromethane at room temperature followed by reaction with 25% ammonia solution gave the target compound **60**.

The thiourea compounds described herein were tested in an HCV subgenomic replicon assay with a SEcreted Alkaline Phosphatase (SEAP) reporter. Compounds 1, 5–53 and 60 were submitted for anti-HCV testing as well as cytotoxicity evaluation in the Ava5 cell lines. As shown in Table 1, compared to the lead compound 1, several thiourea compounds with various tether lengths (5–11) were synthesized in order to determine the optimal spacing between the oxygen atom and the distal phenyl group. Interestingly, the chain length was found to be of considerable importance

for the activity of compounds. Compound **5** with a chain length of one carbon was found to be less active compared to lead compound **1**. On the other hand compounds **6–10** with a chain length of two, three, four, five and six carbons increased the potency about 1.5– to 10-fold with respect to compound **1**. However, going to longer seven-carbon homologue (**11**) was not favorable for activity. These significant results demonstrated that the five and six-carbon homologues (**9**, **10**) in this series were more active against HCV (EC₅₀ = 0.048 and 0.047 μ M, respectively) than their corresponding longer or shorter compounds. These observations provide remarkable evidence that the hydrophobic interaction and conformational flexibility of the alkyl linker influence anti-

^b In vitro selectivity index (CC₅₀/EC₅₀).

Table 2
Anti-HCV activity and cytotoxicity for compounds 25–53 and 60

$$R^2$$
 R^3 $O-A$

Compound	\mathbb{R}^2	R^3	H Ar	1b EC ₅₀ (μM) ^a	$CC_{50} (\mu M)^a$	SI ^b
25	Н	Н		0.059	>50	>847
26	Me	Н		0.104	>50	>481
60	Me	Me		0.105	13	124
27	Н	Н	——F	0.072	5	69
28	н	Н	——CI	0.072	7	97
29	н	Н	———Br	0.072	19	264
30	н	Н	———OMe	0.218	>50	>229
31	н	н	——CO ₂ H	>50	>50	>1
32	Н	Н		0.191	>50	>262
33	Н	Н		0.214	13	61
34	н	Н		0.097	13	134
35	н	Н		0.058	14	241
36	н	Н		0.058	13	224
37	Н	Н		0.107	18	168
38	Н	Н		0.177	11 (continued on	62 next page)

Table 2 (continued)

Compound	R^2	R^3	Ar	1b EC ₅₀ (μM) ^a	CC ₅₀ (μM) ^a	SI ^b
39	Н	Н		0.218	13	60
40	Н	Н	-__	0.594	>50	>84
41	Н	Н	-\(\)	0.913	16	18
42	Н	Н	-\(\)	0.407	12	29
43	Н	Н	-\(\)_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.485	>50	>103
44	Н	Н		0.255	>50	>196
45	Н	Н		0.136	11	81
46	Н	Н		0.121	>50	>413
47	Н	Н	-___\	0.279	>50	>179
48	Н	Н	{	1.134	>50	>44
49	Н	Н	— N	2.992	>50	>17
50	н	Н	——————————————————————————————————————	0.481	26	54
51	Н	Н	N	0.250	15	60
52	Н	Н	N	0.411	24	58
53	Н	Н	NH	0.355	>50	>141

 $^{^{\}rm a}\,$ Mean of triplicate well values. All experiments were performed at least twice.

HCV activity of these thiourea compounds. The position of the alkyl linker at the central phenyl ring of five-carbon homologues (9, 12, 13) impacted anti-HCV activity. The activity increased from *ortho*-

substitution (12) to *para*-substitution (13), and to *meta*-substitution (9), the latter being the most preferred pattern for sterically demanding substituents. Replacing the oxygen linker (9) with a

NH unit (**14**) resulted in a threefold decrease in activity, perhaps caused by a conformational change of the side chain. Substitution at the NH₂ of the thiourea moiety with methyl (**15**), ethyl (**16**), *n*-propyl (**17**), phenyl (**18**), benzyl (**19**) and phenethyl (**20**) groups showed a 14- to 656-fold loss in activity compared to the corresponding compound **9**. The results of antiviral testing indicate that a free NH₂ is required for maintaining activity.

In this study, we observed that the thiourea compound 10, in terms of potency and selectivity index (SI = 596), appear to be the most promising candidate for further development as an anti-HCV agent. On the basis of the skeleton of compound 10, several thiourea compounds 25-53 and 60 were thus synthesized (Schemes 2 and 3). The results are shown in Table 2 and are compared to the compound **10**. The simple replacement of a carbon atom by oxygen (**25**) in the alkyl linker of compound 10 showed a much better selectivity index (SI > 847) in the replicon assay with an EC₅₀ of 0.059 μ M and no cytotoxicity up to 50 uM. Introduction of one (26) or two (60) methyl groups at the 3-position of the alkyl linker resulted in a 1.7-fold decrease in activity compared to compound 25. This effect might be due to their drastically conformational change and steric requirement of the alkyl linker of these thiourea compounds. Introduction of a substituent (F, Cl, Br, OMe) at the para-position of the distal phenyl ring of compound 25, such as compounds 27-30, resulted in a 1.2- to 3.7-fold decrease in activity. It is also interesting to note that the methoxy analogue 30 was considerably less active than the halo analogues **27–29**. On the other hand, the carboxylic acid analogue 31 showed a total loss of activity. Among the biphenyl analogues (32-34), the ortho-biphenyl analogue 34 showed better activity $(EC_{50} = 0.097 \mu M)$ than the para- and the meta-analogues (32, 33). On a direct comparison of compound 25 with compounds 35 and 36, where the phenyl ring (25) was replaced with naphthalene (35) and diphenylmethane (36), an equivalent potency was observed (EC₅₀ = $0.058 \mu M$ for **35** and **36**).

Replacing the methylene group (36) of the diphenylmethane moiety by an oxygen atom (37), amino group (38) and carbonyl group (39) resulted in a slight loss of activity, indicating that methvlene linker is optimal for activity. Additionally, replacement of the phenyl group (32) in the para-position of biphenyl moiety with diethyl amino (40), pyrrolidinyl (41), piperidinyl (42), morpholinyl (43) and pyrrolyl (44) groups caused a loss of activity. This effect might be due to their distinct differences of hydrophobic properties. A comparison of the furan-containing compound (45) with thiophene analogue (46) reveals some interesting differences. The thienyl compound 46 exhibited 1.1 times more potent anti-HCV activity (EC₅₀ = 0.121 μ M), 5 times higher selective index (SI > 413) than the furyl compound 45. Among the pyridyl analogues (47-49), the 2-pyridyl analogue 47 was more active than 3- and 4-pyridyl analogues (48, 49) without significant cytotoxicity $(CC_{50} > 50 \mu M)$. Replacement of the naphthyl group of compound 35 with isoquinolyl (50), quinolyl (51, 52) and indolyl (53) groups resulted in a 4.3- to 8.3-fold decrease in activity. The significant results demonstrated that the endocyclic nitrogen of the pyridyl, isoquinolyl and quinolyl moieties was not tolerated (compare **25** to **47–49** and **35** to **50–52**). This unexpected biological result is not fully understood and is worthy of further study.

In conclusion, from the compound screening using a cell-based HCV subgenomic replicon assay, we identified a lead compound **1** with an EC₅₀ of 0.494 μ M. We explored the structure-activity relationship for this class of inhibitors. A free NH₂ group of the thiourea moiety is critical for activity. The activities of this series of compounds were very sensitive to the variation in the chain length of the alkyl linker. Attempts to replace the oxygen linker with nitrogen caused a loss of activity. On the basis of these biological results, compound **10** with a chain length of six carbons was found to exhibit the most potent antiviral activity against HCV (EC₅₀ = 0.047 μ M). Further SAR studies and mechanistic studies on this class of antiviral compounds are currently under active investigation and will be reported in due course.

Acknowledgements

We gratefully acknowledge the financial support of the National Health Research Institutes in Taiwan (ROC).

References and notes

- Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Science 1989, 244, 359.
- (a) Simmonds, P.; Holmes, E. C.; Cha, T. A.; Chan, S. W.; McOmish, F.; Irvine, B.; Beall, E.; Yap, P. L.; Kolberg, J.; Urdea, M. S. J. Gen. Virol. 1993, 74, 2391; (b) Simmonds, P. J. Hepatol. 1999, 31, 54; (c) Simmonds, P. J. Gen. Virol. 2004, 85, 3173
- 3. World Health Organization. J. Viral Hepat. 1999, 6, 35.
- (a) Cuthbert, J. A. J. Clin. Microbiol. Rev. 1994, 7, 505; (b) El-Serag, H.; Mason, A. Arch. Int. Med. 2000, 160, 3227; (c) Bartenschlagar, R. Antiviral Chem. Chemother. 1997, 8, 281; (d) Dymock, B. W. Emerg. Drugs 2001, 6, 13; (e) Dymock, B. W.; Jones, P. S.; Wilson, F. X. Antiviral Chem. Chemother. 2000, 11, 79; (f) Hoofnagle, J. H.; Di Bisceglie, A. M. New Engl. J. Med. 1997, 336, 347; (g) Hoofnagle, J. H. Hepatology 2002, 36, S21; (h) Seeff, L. B. Hepatology 2002, 36, S35; (i) Pawlotsky, J. M. Curr. Opin. Infect. Dis. 2003, 16, 587.
- 5. Boyer, N.; Marcellin, P. J. Hepatol. 2000, 32, 98.
- (a) Abrignani, S.; Houghton, M.; Hsu, H. H. J. Hepatol. 1999, 31, 259; (b) Prince, A. M.; Shata, M. T. Clin. Liver Dis. 2001, 5, 1091; (c) Forns, X.; Payette, P. J.; Ma, X.; Satterfield, W.; Eder, G.; Mushahwar, I. K.; Govindarajan, S.; Davis, H. L.; Emerson, S. U.; Purcell, R. H.; Bukh, J. Hepatology 2000, 32, 618.
- (a) Hoofnagle, J. H.; Seeff, L. B. New Engl. J. Med. 2006, 355, 2444; (b) Zoulim, F.; Chevallier, M.; Maynard, M.; Trepo, C. Rev. Med. Virol. 2003, 13, 57; (c) Manns, M. P.; McHutchison, J. G.; Gordon, S. C.; Rustgi, V. K.; Shiffman, M.; Reindollar, R.; Goodman, Z. D.; Koury, K.; Ling, M.; Albrecht, J. K. Lancet 2001, 358, 958; (d) McHutchinson, J. G.; Gordon, S. C.; Schiff, E. R.; Shiffman, M. L.; Lee, W. M.; Rustgi, V. K.; Goodman, Z. D.; Ling, M. H.; Cort, S.; Albrecht, J. K. New Engl. J. Med. 1998, 339, 1485.
- Lee, J. C.; Chang, C. F.; Chi, Y. H.; Hwang, D. R.; Hsu, J. T. A. J. Virol. Methods 2004, 116. 27.
- (a) Hoffmann, P.; Quasdorff, M.; Gonzalez-Carmona, M. A.; Caselmann, W. H. Expert Opin. Ther. Patents 2003, 13, 1707; (b) Wyles, D. L.; Kaihara, K. A.; Schooley, R. T. Antimicrob. Agents Chemother. 2008, 52, 1862; (c) Yang, W.; Zhao, Y.; Fabrycki, J.; Hou, X.; Nie, X.; Sanchez, A.; Phadke, A.; Deshpande, M.; Agarwal, A.; Huang, M. Antimicrob. Agents Chemother. 2008, 52, 2043.